

DESCRIPTION OF PROGRAMME OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAMME : M. SC. (IT) - MASTER OF SCIENCE IN INFORMATION TECHNOLOGY

P.O. No.	Description of Programme Outcome	Domain as per Bloom's Taxonomy	Level of Bloom Taxonomy*
PO-1	Apply knowledge of computing fundamentals, computing specialization, mathematics, and domain knowledge appropriate for computing models from defined problems and requirements.	COGNITIVE	1, 2, 3
PO-2	Identify, formulate and solve computing problem searching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.	PSYCHOMOTOR	1, 2, 3, 4, 5, 6
PO-3	Design and evaluate solutions for computing problems, and design and evaluate systems, components, or processes that meet specified needs.	PSYCHOMOTOR	1, 2, 3, 4, 5, 6
PO-4	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	COGNITIVE	1, 2, 3
PO-5	Build, select, adapt and apply appropriate techniques, resources, and modern computing tools to computing activities, with an understanding of the limitations.	PSYCHOMOTOR	1, 2, 3

PO-6	Identify and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practices.	AFFECTIVE	1, 2
PO-7	Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.	COGNITIVE	1, 2, 3
PO-8	Demonstrate effectively with the computing community, and with society at large, about computingactivities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.	PSYCHOMOTOR	1, 2
PO-9	Assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practices.	COGNITIVE	1, 2, 3, 4, 5, 6
PO-10	Adapt and work effectively as an individual and as a member or leader in diverse teams and in multidisciplinary environments.	COGNITIVE	1, 2, 3, 4, 5, 6
PO-11/ PSO1	Apply the knowledge of computer science tools and techniques to solve real world problems.	COGNITIVE	1, 2, 3, 4
PO-12/ PSO2	Recognizing broad range of programming language platforms	COGNITIVE	1, 2
PO-13/ PSO3	Accumulating Learners with the ability to route their talent into higher education M. Tech, M. Phil, Ph. D and preparing for examinations such as UGC NET, JRF, GATE etc.	COGNITIVE	1
PO-14/ PSO4	Identify a timely opportunity and using innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large.	AFFECTIVE	1, 2
PO-15/ PSO5	Demonstrate the ability to define the structure and development methodologies of software systems.	COGNITIVE	1, 2, 3

^{*}These six levels are: (1) knowledge, (2) comprehension, (3) application, (4) analysis, (5) synthesis, and (6) evaluation

PO 1-10 GENERIC

PO11-15 SPECIFIC or PSOs

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : M.Sc. (IT) - 1 (1st SEM)

NAME OF THE COURSE : COMPUTER PROGRAMMING USING C(MS-112)

NAME OF FACULTY : MANPREET KAUR(ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Recognize the flowchart and design an algorithm for a given problem and to develop IC programs using operators.	Discussion Method
CO 2	Describe conditional and iterative statements to write C programs	Class Test, PPT, Lab

CO 3	Demonstrate user defined functions to solve real time problems	Assignment, Lab, MST
CO 4	Differentiate programs involving decision control statements, loop control statements and case control structures	Assignment, Discussion Method,
CO 5	Write program to enter data to the file, declaring and usage of pointer operations are being covered.	Lab Work, Class test
CO 6	Compare the difference between the Designing, Writing, Compilation and Debugging programs in C Language.	MST, Lab Work

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : M.Sc. (IT) - 1 (1st SEM)

NAME OF THE COURSE : COMPUTER ORGANIZATION AND

ARCHITECTURE (MS-113)

NAME OF FACULTY : NEETU SHARMA(ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Recognize the organization of computer, its design.	Class Test
CO 2	Explain the working of CPU, ALU and Register transfer Language.	Discussion Method, Viva
CO 3	Demonstrate the Memory organization, Virtual memory and DMA.	Class Test, MST
CO 4	Calculate Number System, binary codes, Boolean laws to minimize the Boolean	Class Assignment, Home Assignment
	expression and also design K-Maps for expressions.	

CO 5	Design various combinational and sequential circuits	Assignment, MST
CO 6	Compare the working of different types of registers.	MST

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT : DEPARTMENT OF MATHEMATICS

NAME OF THE PROGRAM : M.Sc. (IT) - 1 (1st SEM)

NAME OF THE COURSE : MATHEMATICAL FOUNDATION OF

COMPUTER SCIENCE (MS-114)

NAME OF FACULTY : SANJIVANI(ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Determine when a function is one-one and onto.	Group discussion
CO 2	Demonstrate different traversal methods for trees.	Class Assignment/Authentic problem solving
CO 3	Model Problems in Computer Science using graphs.	Group discussion/ Class Assignment
CO 4	Apply Counting Principle to determine Probability.	Authentic problem Solving/ Seminar
CO 5	Work in a group to understand finite state machine language.	Class Assignment/Group Discussion
CO 6	Discriminate between a Eulerian Graph from a Hamiltonian graph for use in	Class Assignment/ Group Discussion/ Authentic problem solving

_		
	solving mathematical problems.	

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : $M.SC(IT) - 1(1^{st}SEM)$

NAME OF THE COURSE : OPERATING SYSTEMS (MS-115)

NAME OF FACULTY : IQBAL SINGH (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Discuss the operating system, types and functions of operating system.	Objective Test/Assignments/ Exams/Class Tests

CO 2	Practise various CPU scheduling algorithm.	Problem Solving/ Class Test/Group Discussion
CO 3	Identify Deadlock condition in operating system, Explain various deadlock preventions techniques.	Problem Solving/ Class Test/Group Discussion
CO 4	Explain memory hierarchy, methods of memory access and memory allocation techniques.	Assignments/Exams/Class Tests
CO 5	Practice various page replacement algorithm and disk allocation algorithm.	Problem Solving/ Class Test/Group Discussion
CO 6	Explain various security techniques. threats, Cryptography.	Assignments/Exams/Class Tests

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : $M.SC(IT) - 1(2^{nd}SEM)$

NAME OF THE COURSE : OOPs USING C++(MS-121)

NAME OF FACULTY : MAMTA DEVI (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Define the procedural and object-oriented paradigm with concepts of streams,	Discussion Method, Class Test, Lab
	classes, functions, data, and objects.	
CO 2	Recognize dynamic memory management techniques using pointers, constructors,	Discussion Method, Class Test
	destructors, etc.	
CO 3	Demonstrate the use of various OOPs concepts with the help of programs.	Class Test, MST

CO 4	Categorize inheritance with the understanding of early and late binding, usage of exception handling, generic programming.	Class Assignment, Home Assignment
CO 5	Develop the programs to applythe concept of function overloading, operator overloading, virtual functions and polymorphism.	Assignment, MST
CO 6	Compare the concepts of C and C++.	MST, Lab Work, MST

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : $M.SC (IT) - 1 (2^{nd}SEM)$

NAME OF THE COURSE : DATA AND FILE STRUCTURES(MS-122)

NAME OF FACULTY : TARANJEET KAUR (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment

CO 1	Develop the knowledge of basic data structure for storage and retrieval of ordered and unordered data.	MST, Class Test, Viva
CO 2	Discuss the applications of data structure.	MST, Assignment, Class Test
CO 3	Compare and analyze algorithm for efficiency using Big O notation.	MST, PPT, Class Test
CO 4	Evaluate algorithm and data structure in terms of time and space complexity of basic operations.	MST, Lab Work, Class Test
CO 5	Formulate the solution for programming problems or improve existing code using learned algorithm and data structures	MST, Lab Work, PPT, Viva
CO 6	Select appropriate searching and/or sorting techniques for application development.	MST, Assignment, Class Test

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : $M.SC (IT) - 1 (2^{nd}SEM)$

NAME OF THE COURSE : VISUAL BASIC (MS-123)

NAME OF FACULTY : NEETU SHARMA (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Arrange, create, build and debug Visual Basic application	MST, Class Test, Viva
CO 2	Express the working of Forms, basic Active X controls, Advanced Active X controls.	MST, Assignment, Lab Work

CO 3	Apply External Functions to Create ActiveX Control with VB.	MST, PPT, Lab Work
CO 4	Design Internet Application with VB, Web Browsing objects, using Active Server Pages.	MST, Lab Work, Class Test
CO 5	Compose Database Application using visual Data manager, selected data with SQL.	MST, Assignment, PPT, Viva
CO 6	Select ActiveX Server to communicate with other Programs & create ActiveX Client Application.	MST, Assignment, Class Test

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : $M.SC (IT) - 1 (2^{nd}SEM)$

NAME OF THE COURSE : RDBMS AND ORACLE (MS-124)

NAME OF FACULTY : NEETU SHARMA (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Recognize the basic concepts and various data model used in database design ER modeling	MST, Class Test, Viva
	concepts and architecture use and design queries using SQL	
CO 2	Apply relational database theory and be able to describe relational algebra expression, tuple and domain relation expression for queries	MST, Assignment, Lab Work

CO 3	Demonstrate an understanding of normalization theory and apply such knowledge to the	MST, PPT, Class Test
	normalization of a database	
CO 4	Recognize/ identify the purpose of query processing and optimization and also demonstrate the	MST, Lab Work, Class Test
	basic of query evaluation.	
CO 5	Apply and relate the concept of transaction, concurrency control and recovery in database.	MST, Assignment, PPT, Viva
	Apply and relate the concept of transaction, concurrency control and recovery in database.	1VIST, 71SSIgnment, 111, VIVa
CO 6	Select the different Data Objects and be familiar with introduction to mobile database,	MST, Assignment, Class Test
	Multimedia databases, data warehousing and mining.	

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT : DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAMME : $M. Sc. (IT) - 2 (3^{rd}SEM)$

NAME OF COURSE : WEB TECHNOLOGY (MS-211)

NAME OF FACULTY : IQBAL SINGH

C.O. No.	Description of Course Outcome	Method/sof Assessment

CO-1	Illustrate basic concepts of Internet, WWW, and Web pages.	Objective Test/Assignments/ Exams/Class Tests
CO-2	Design web pages using HTML and CSS.	Lab work
CO-3	Develop dynamic web sites using java script techniques.	Lab work
CO-4	Create Forms in PHP with various functions.	Lab work/Class Tests/Exams
CO-5	Explain servlets, Setting Cookies.	Class Test/Group Discussion
CO-6	Construct PHP Database for dynamic Web pages.	Lab work

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT : DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAMME : $M. Sc. (IT) - 2 (3^{rd}SEM)$

NAME OF COURSE : JAVA PROGRAMMING (MS-212)

NAME OF FACULTY : DINESH KUMAR

CO No.	Description of Course Outcome	Method/s of Assessment
CO-1	Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.	MST, Class Test, Quiz

CO-2	Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.	MST, Assignment, Viva
CO-3	Define effectively variety of professional contexts	MST, PPT, Class Test
CO-4	Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.	MST, Assignment, Viva
CO-5	Demonstrate effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.	MST, Assignment, PPT, Viva
CO-6	Identify and analyse user needs and to take them into account in the selection, creation, integration, evaluation, and administration of computing based systems	MST, Assignment, Class Test

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT : DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAMME : M. Sc. (IT) -2 (3rdSEM)

NAME OF COURSE : SOFTWARE ENGINEERING (MS-213)

NAME OF FACULTY : TARANJEET KAUR

CO No.	Description of Course Outcome	Method/s of Assessment
CO-1	Describe the basic concepts and applications of software engineering	MST, Class Test, Quiz
CO-2	Devise the knowledge of process models used for developing software	MST, Assignment, Viva

CO-3	Build the understanding of unified modeling language	MST, PPT, Class Test
CO-4	Practise to model the data requirement of an application and testing of software	MST, Assignment, Viva
CO-5	Formulate the solution for the real world problem using software engineering principles	MST, Assignment, PPT, Viva
CO-6	Apply design and development principles in the construction of software systems of varying complexity	MST, Assignment, Class Test

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT : DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : M. Sc. (IT) -2 (3rd SEM)

NAME OF THE COURSE : COMPUTER NETWORK (MS-214)

NAME OF FACULTY : RAKESH JOSHI (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Identify the concepts, uses, goals and applications of computer networks, computer network structure and architecture	Exam, MST, Test , Assignment

CO 2	Explain reference models: OSI model, TCP/IP model, Comparison of TCP/IP and OSI models	Exam MST, Assignment, MCQs, Quiz
CO 3	Describe protocols: Medium Access Sublayer and LAN protocols.	Exam MST, Assignment, Test
CO 4	Illustrate the use of various network devices and tools.	Exam MST, Presentation
CO 5	Describe routing and its algorithm,	Exam MST, Test
CO6	Express network security and its concepts	Exam MST, Assignment

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT : DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : $M. Sc. (IT) - 2 (4^{th}SEM)$

NAME OF THE COURSE : COMPUTER GRAPHICS(MS-221)

NAME OF FACULTY : IQBAL SINGH (ASST. PROF.)

C.O. No.	Description of Course Outcome	Method/sof Assessment

CO-1	List the basic concepts in used the computer graphics.	Objective Test/Assignments/Exams/Class Tests
CO-2	Show various algorithms to scan, convert the basic geometrical primitives, transformation, area filling, clipping.	Problem Solving/ Class Test/Group Discussion
CO-3	Describe the importance of viewing and projections.	Assignments/Class Test/Group Discussion
CO-4	Define the fundamentals of animations.	Computer simulations/Lab work
CO-5	Explain Hidden line and surface elimination algorithms,z-buffer, scan-line, sub-division, Painter's algorithm	Class Test/Group Discussion
CO-6	Explain Illumination Models, Surface Rendering Methods.	Assignments/Exams/Class Tests

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAMME : M.Sc. (IT) - 2 (4th SEM)

NAME OF COURSE : LINUX ADMINISTRATION (MS-222)

NAME OF FACULTY : DINESH KUMAR

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Discuss the evolution of Open Source operating systems.	MST, Class Test, Quiz
CO-2	Operate open source operating system like Linux.	MST, Assignment, Viva
CO-3	Create scripts in Linux.	MST, PPT, Class Test
CO-4	Apply advanced concepts using open source operating system.	MST, Assignment, Viva

CO-5	Set up & administration of Linux operating system	MST, Assignment, PPT, Viva
CO-6	Perform various services on Linux operating system.	MST, Assignment, Class Test

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT : BIOTECHNOLOGY& FOOD PROCESSING

NAME OF THE PROGRAM : $M. Sc. (IT) - 2 (4^{th}SEM)$

NAME OF THE COURSE : ARTIFICIAL INTELLIGENCE (MS-223)

NAME OF FACULTY : DR. MAMTA ARORA (ASSO. PROF.)

C.O. No.	Description of Course Outcome	Method/sof Assessment
CO-1	Describe Objectives and types of research (Descriptive Vs. analytical research, applied Vs. fundamental research, qualitative Vs. quantitative research, conceptual versus empirical research)	Exam, Class test, Group discussion

CO-2	Formulate research problem and its necessity	Assignment, Viva, Authentic problem solving
CO-3	Develop the research hypothesis &Research	Rapid fire question, seminar
CO-4	Execute research, observation and collection of data, Compare and contrast methods of data collection, primary data, secondary data; Sampling methods, data processing and analysis, statistical tools, hypothesis testing, generalization and interpretation	Authentic problem solving, Home assignment, field Assignment
CO-5	AppraiseTechniques and importance of documentation	Open book exam/Self-Test/portfolio
CO-6	Critically evaluate different steps in preparation of a written scientific document	Poster presentation, paper presentation

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT : DEPARTMENT OF COMPUTER SCIENCE

NAME OF THE PROGRAM : $M. Sc. (IT) - 2 (4^{th}SEM)$

NAME OF THE COURSE : ARTIFICIAL INTELLIGENCE (MS-224)

NAME OF FACULTY : RAKESH JOSHI (ASST. PROF.)

CO No.	Description of Course Outcomes	Method/s of Assessment
CO 1	Define fundamental understanding of the history of artificial intelligence (AI) and its foundations.	MST, Test , Assignment

CO 2	Describe basic principles of AI in solutions that require problem solving, inference and perception.	MST, Assignment, MCQs, Quiz
CO 3	Demonstrate awareness and a fundamental understanding of various applications of AI techniques in intelligent agents, expert systems,	MST, Assignment, Test
CO 4	Explain fundamentals of knowledge representation (logic-based, frame-based, semantic nets), inference engine.	Univ. Exam MST, Presentation, Test
CO 5	Translate English into first order logic and vice versa. Represent and debug knowledge in an appropriate first order logic representation.	Exam MST, Test, Assignment
CO6	Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications.	Exam MST, Presentation, GD

MAPPING OF PROGRAM OUTCOME VERSUS COURSE OUTCOME INTERNAL QUALITY ASSURANCE CELL

NAME OF DEPARTMENT ==> DEPARTMENT OF COMPUTER SCIENCE

NAME OF PROGRAMME ==> M. Sc. (IT) MASTER OF SCIENCE IN INFORMATION TECHNOLOGY

NAME OF COURSES ==> 17

CORR	CORRELATION LEVEL:1,2, and 3;1SLIGHT (LOW); 2MODERATE (MEDIUM) 3 HIGH												ME	NTION (GAP AN	IALYSIS	S AT TH	E END	
S.NO	Year	Semester	Name of Course/Code		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PO13	PO14	PO15
1	1st		Introduction to Information Technology	CO1	3	2	1	1	2	2	1	1	1		2	2	2	1	1
		1st		CO2	3	2	2	1	2	1	1	2	2	2	2	2	1	1	1
				CO3	2	1	1	1	1	1	1	1	1	1	2		2		1

			CO4	2	2	2			1	1	1	1	1	2	3	1	1	1
			CO5	2	2	2		1	1	1	1			2	2	2	1	1
			CO6	3	3	2	1	1	1	1	1	1	1	2	2	2	1	1
			CO1	2	3	4	1	3	1	1	1	2	1	3	2	1	2	2
			CO2	1	4	3	2	3	2	2	1	3	2	3	2	1	1	1
2		Computer Programming	CO3	2	3	4	1	3	1	2	2	3	1	4	2	3	1	3
2		using C	CO4	3	3	4	1	3	1	1	2	2	2	3	1	1	2	3
			CO5	2	3	5	2	3	1	1	1	2	1	4	2	2	2	3
			CO6	1	4	4	2	3	1	2	2	3	1	4	1	2	1	2
			CO1	3	2	3		2	1	1	1		2	3	1	3	2	2
			CO2	3	3	3		2	2	1	1		2	2	1	2	1	1
3		Computer Organization and	CO3	3	2	3	1	3	2	1	1		2	3	2	2	1	3
		Architecture	CO4	3	3	3	3	3	1	2	1		2	3	2	3	2	3
			CO5	3	3	3	3	3	1	2	1		2	3		2	2	3
			CO6	3	3	3	2	3	1	1	1		2	3		1	1	1
			CO1	1			2			2			2	2	2		2	2
			CO2	1				1		2					1		1	2
4		Mathematical Foundation of	CO3	1	1	1	1	2		1		2	1	2	2	1	1	1
-		Computer Science	CO4	1			1			1								1
			CO5	1		2	2		2					2		2		2
			CO6	1		1					2		2				2	2
			CO1	3	1	1	1	1	2	1	1	1		3		1	1	1
5		Operating System	CO2	1	3	3	3	2	1	1	1			2		2		
			CO3	1	2	2	2	2	1	1	1			3		2		

				CO4	1	2	2	2	2	2	1	1			3		2	1	
				CO5	2	3	3	2	2	2	1	1			2		3		
				CO6	2	2	2	2	2	2	2	2			2		2	3	3
				CO1	3	2	2	1	2	1	1	1		2	2	2	2	1	1
				CO ₂	3	2	3	1	3	2	2	1		2	3	3	2	1	2
6			Object Orinted	CO ₃	3	2	2	2	3	2	2	2		2	2	2	3	2	2
0			Programming in C++	CO4	3	2	2	2	2	2	2	2		3	3	3	2	1	2
				CO5	2	3	3	3	2	1	2	2		3	3	3	2	1	2
				CO6	1	2	3	2	2	2	2	2		3	3	3	2	1	1
				CO1	2	3	2	1	2	1	2	1	1	1	3			1	3
				CO2	1	1	1	1	1	1	2	1	1	1	3	1	3	1	1
7			Data and File Structure	CO ₃	1	3	1	1	1	1	1	1	1	1	3	2	3	1	1
,			Data and The Structure	CO4	1	3	1	1	1	1	1	1	1	1	3	2	3	1	1
	1st	2nd		CO5	1	3	2	1	2	1	1	1	1	1	3	3	3	2	3
				CO6	2	3	2	1	2	1	1	1	1	1	3	1	3	1	2
				CO1	3	3	3	1	3	2	2	2	1	3	3	3	2	2	2
				CO ₂	3	3	3		3	2	2	3		2	3	3	2	2	1
8			Visual Basic	CO ₃	3	3	3	1	3	2	1	2	1	2	3	3	2	2	2
			VISUAL DUSIC	CO4	3	3	3	2	3	3	3	2	2	3	3	3	3	3	3
				CO5	3	3	3	1	3	2	3	3	1	3	3	3	2	3	3
				CO6	2	3	3		3	2	2	2	1	2	2	3	2	2	2
				CO1	3	3	3		3	2	2	3	3	3	3	3	3	2	3
9			RDBMS and ORACLE	CO ₂	3	3	3		3	3	3	3	2	3	3	3	2	3	3
				CO ₃	3	3	3	1	3	2	2	3	3	3	3	3	3	3	3

				CO4	2	3	3	1	2	3	2	2	3	3	3	3	3	3	3
				CO5	3	3	3		3	2	3	3	1	3	3	3	3	2	3
				CO6	3	3	3	1	3	3	3	2	2	3	3	3	3	3	3
				CO1	3					2	1	1			3	3	2	2	2
				CO ₂	3	2	3	1	1	1	1	1			3	3	2	2	2
1			Web Technology	CO ₃	2	2	3	1	1	1					2	3	2	1	1
			web reemology	CO4	2	2	3	1	3	3	1	1			2	3	2	1	1
				CO5	1	1	3	1	1	1	1				2	3	2	1	1
				CO6	2	2	3	3	3	1	1	1			2	3	2	1	1
				CO1	1	3	2								3				1
				CO ₂	1	2	3		2	1		1			2				3
11			Java Programming	CO ₃		1		3		3	2	1	2			1	1	1	
			Java i rogramming	CO4	1	1		3		3	2	1	2					1	
	2nd	3rd		CO5		1	1							3	1	1			2
	_			CO6	1	2	3	1	3		2	1			1			2	2
				CO1	1	2	1	1	1	1	1	1	1	1	2	1	3	1	1
				CO ₂	2	3	3	1	3	2	2	1	2	1	3	2	3	1	3
12			Software Engineering	CO ₃	2	3	3	1	3	1	2	1	1	1	3	2	3	1	3
12			Solow with Engineering	CO4	3	3	3	1	2	1	3	1	1	1	3	2	3	1	3
				CO5	3	3	3	1	3	1	3	1	1	1	3	3	3	1	3
				CO6	3	3	3	1	3	1	3	1	1	1	3	3	3	1	3
				CO1	3			2	1	1	3	2		3	3		3	2	3
13			Computer Networks	CO ₂	3		2	3	1	1	3	2		3	3		3	2	3
				CO ₃	3		2	2	1	1				3	3	1	3	2	3

				CO ₄	3		1	3	2	2	1			3	3	2	3		3
				CO5	3	2	2	3	1	3	3	3		3	3	3	3	3	3
				CO6	3		3	3	3	3	3	2		3	3	2	3		3
				CO1	1	1									3		3	1	1
				CO ₂	2	3	3	3	3						2		3	1	1
14			Computer Graphics	CO3	3	3	3	1	1	1					2	2	2	1	1
17			Computer Grapmes	CO4	3	1	1	1	1	1	1				2		2		
				CO5	2	2	2								2	2	2	1	1
				CO6	2	2	2		1	1	1				2	2	2	1	1
				CO1	1		2		1										1
				CO ₂		3	3	1	2	1	1	1	1		2	1	1	1	2
15			Linux Adminitration	CO ₃	2	3	3	2	2	1	1	2	1		1				2
			Linux Auminiti ation	CO4	2	3	3	1	2	2	2	2	2				1	2	3
	2nd	4th		CO5	2	2	2	1	2	2	2	2	2					2	3
				CO6	1	3	3	2	2	1	1	2	1		1			1	3
				CO1	2	3	3	3			2	1	2	1	2		3	3	
				CO2	2	3	3	3		1	3	1	3	2	2		2	2	
16			Research Methodology	CO3	3	2	1	1		1	1	2	3	2	3		3	3	
			research vicinouology	CO4	3	3	2	2	1	3	3	3	3	3	1		3	3	
				CO5	3			2	2			2	3	1	2			2	
				CO6	3			3	3	3	3	3	3	3			3		
				CO1	1			1	1	1	1						1		
17			Artificial Intelligence	CO ₂	1			1	1	1	1						1		
				CO ₃	3	1			2			1	1		1				2

1				i	1	İ	i	Ī	Ī	Ī	i i	İ	Ī	1	i	1 1
		CO ₄	1						1				2			
		CO5	2	2	2	1	2		1	1			3	2	1	2
		CO6	1			2	1	1			1			1	1	

ATTAINMENT OF PO BY DIRECT METHOD

				AM	AR SH	IAHEE	ED BA	BA A.	IT SIN	<mark>IGH Л</mark>	JJHAF	R SINC	Н МЕ	MORI	AL CO	OLLEC	E, R	OPA	R PU	J NJ A	AΒ				
																		INT	ERN	AL (QUA	ALITY	ASSU	JRANCI	E CELL
P	PROGRAMN BCA	ИЕ:	SEMEST	ER: 6TH			YEAF 2019	R: 201	8-				DATE	OF DI	ECLA	RATIC	N O	F RE	ESUL	ТВ	Y Ul	NIVEI	RSITY		
S. N O	NAME OF STUDE NT	CL AS S R.N O.	UNIVE RSITY R. NO.	REGIST RATION NO.	TEC	WEB HNOL	OGY		JAVA GRAM G			FTWA INERI			MPUT			PROG AB -			PRO AB				
					The	Inte rnal	TO TA L (T+I	The ory	Inte rnal	TO TA L (T+I	The		TO TA L (T+I	The ory	Inte rnal	TO TA L (T+I	E xt	I n	tOT AL	E xt	I n t	tOT AL	TO TA L SU M	% age/C GPA	ATTAI NMENT LEVEL
1	TARAN DEEP KAUR	380 1	36520	811- 2013-271	52	29	81	43	28	71	25	28	53	46	29	75	6	2 9	95	6 5	2 9	94	469	78.17	3

2	PAWAN PREET KAUR	380	36521	814- 2014-178	54	28	82	34	27	61	27	27	54	42	28	70	6 2	2 8	90	6 3	2 7	90	447	74.50	3
3	AMANP REET KAUR	380 3	36522	814- 2014-174	48	29	77	46	29	75	32	29	61	48	29	77	6 4	2 9	93	6 4	2 9	93	476	79.33	3
4	KIRANJ EET KAUR	380 4	36523	814- 2014-177	46	27	73	40	27	67	26	26	52	44	28	72	6 4	2 8	92	6 3	2 7	90	446	74.33	3
5	PARMI NDER KAUR	380 5	36524	814- 2014-179	51	29	80	46	29	75	26	26	52	41	29	70	6 5	2 9	94	6 3	2 9	92	463	77.17	3
				AVERA GE			78.6 0			69.8 0			54.4 0			72.8 0			92. 80	I.		91. 80	460. 2		

Average PO attainment by direct method is **76.7** %

ATTAINMENT OF PO BY INDIRECT METHOD(EXIT SURVEY)

							DEPARTMENT (OF CO	MPUT	ER SC	CIENCE				
							EX	IT SUI	RVEY						
							PROGRAMME: M.Sc. (IT)			S	SESSIO	N - 2018	-19		
	Pos & PSOs		S	CAL	ES		TOTAL RESPONDANTS	TOT	AL MA	ARKS	FOR SO	CALES	TOTAL	%AGE	LEVEL OF
		1	2	3	4	5		1	2	3	4	5	MARKS		ATTAINMENT
1	A	0	0	3	2	2	7	0	0	9	8	10	27	77.14	3
2	В	0	0	1	4	2	7	0	0	3	16	10	29	82.86	3
3	С	1	5	7	0	0	3	4	25	32	91.43	3			
4	D	0	0		6	1	7	0	24	5	29	82.86	3		
5	Е	0	0		2	5	7	0	0	0	8	25	33	94.29	3

6	F	0	0	2	3	2	7	0	0	6	12	10	28	80.00	3
7	G	0	0	1	3	3	7	0	0	3	12	15	30	85.71	3
8	Н	0	0		4	3	7	0	0	0	16	15	31	88.57	3
9	I	0	0	3	1	3	7	0	0	9	4	15	28	80.00	3
10	J	0	0	1	3	3	7	0	0	3	12	15	30	85.71	3

Average PO attainment by indirect method= **84.85** %

Total PO attainment (%) = (weightage: 80 %) X (Average attainment in direct method) + (weightage: 20 %) X (Average attainment in indirect method)

= (80%) X 76.7 + (20%) X 84.85

= 78.33%

Level of Attainment = Level 3